Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
J Vet Med Sci ; 86(2): 239-246, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38171882

RESUMO

Parrot Bornavirus (PaBV) has been reported to cause indigestion and other wasting symptoms such as weight loss and lethargy. The pathogenesis of PaBV has yet to be fully elucidated. This study reports PaBV infections in South Korea and suggests a trend in the genetic information gathered from clinical cases. A total of 487 birds with or without clinical symptoms were tested for bornavirus. Twelve of 361 asymptomatic birds tested positive for bornavirus, while 15 of 126 birds with various symptoms tested positive. A segment of approximately 1,540 bps including the N, X, P and M proteins were obtained from 23 of the positive strains and analyzed with other strains found on GenBank that had clinical information. PaBV was type 2 and 4 in South Korea, and certain amino acid sequences showed a difference between symptom presenting animals and asymptomatic animals in the X protein and P protein. When considering that some asymptomatic cases may have been latent infections at the time of examination, it is plausible these trends may grow stronger with time. Majority of PaBV was type 4 in South Korea. If these trends are confirmed, diagnosis of potentially pathogenic PaBVs in a clinical manner will be possible during the early stages of infection.


Assuntos
Doenças das Aves , Bornaviridae , Infecções por Mononegavirales , Papagaios , Animais , Bornaviridae/genética , Doenças das Aves/patologia , Infecções por Mononegavirales/epidemiologia , Infecções por Mononegavirales/veterinária , Infecções por Mononegavirales/patologia , República da Coreia/epidemiologia
2.
J Wildl Dis ; 60(1): 164-167, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37924236

RESUMO

Avian bornavirus (ABV) is known to infect at least 80 avian species and is associated with avian bornaviral ganglioneuritis (ABG). Avian bornaviral ganglioneuritis is characterized by a lymphoplasmacytic infiltration of the nervous tissue, mainly affecting the nerves that supply the gastrointestinal tract of birds. This disease is diagnosed commonly in psittacines under human care and has been demonstrated in wild bird species; however, its occurrence in raptors is largely unknown. Because of the commonality of ABV in the pet bird population, there is concern about the spread of this virus to other companion avian species, such as falconry birds, as well as wildlife. This prospective study used reverse-transcription quantitative PCR (RT-qPCR) to survey free-ranging Colorado and Wyoming, US, raptor populations for ABV. Quantitative PCR was performed on mixed conjunctival-choanal-cloacal swabs collected from live birds (n=139). In dead birds, a combination of mixed swabs (n=265) and tissue samples of the brain (n=258), heart (n=162), adrenal glands (n=162), liver (n=162), kidney (n=139), spinal cord (n=139), and brachial plexus (n=139) were evaluated. All 1,565 swab and tissue samples RT-qPCR results from the 404 birds evaluated were negative. Based on these results and a lack of clinical signs suggestive of ABG, ABV is likely not a prevalent pathogen in Colorado and Wyoming raptor populations at this time.


Assuntos
Doenças das Aves , Bornaviridae , Infecções por Mononegavirales , Aves Predatórias , Humanos , Animais , Colorado/epidemiologia , Wyoming/epidemiologia , Estudos Prospectivos , Aves , Animais Selvagens , Doenças das Aves/epidemiologia , Infecções por Mononegavirales/epidemiologia , Infecções por Mononegavirales/veterinária
3.
BMC Vet Res ; 19(1): 259, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057808

RESUMO

BACKGROUND: Avian bornavirus (ABV) is a neurotropic virus, it has been established as the primary causative agent of proventricular dilatation disease (PDD). However, substantial international trade and transnational trafficking of wild birds occur, potentially enabling these birds to harbor and transmit pathogens to domestic poultry, adversely affecting their well-being. Real-time RT-PCR was employed to detect the presence of PaBV-4 in parrots imported to China in 2022. RESULTS: In 2022, a total of 47 cloacal swabs from 9 distinct species of parrots were collected at the Wildlife Rescue Monitoring Center in Guangdong, China. The purpose of this collection was to detect the presence of PaBV-4. Using real-time PCR techniques, it was determined that the positive rate of PaBV-4 was 2.12% (1 out of 47) in parrots. The PaBV-4 virus was detected in a Amazona aestiva that had been adopted for one month. Conversely, all other species tested negative for the virus. Subsequently, the whole genome of the PaBV-4 GD2207 strains was sequenced, and the homology and genetic evolution between these strains and previously published PaBV-4 strains on GenBank were analyzed using DNAStar and MEGA7.0 software. The findings revealed that the full-length genome of PaBV-4 consisted of 8915 nucleotides and encoded six proteins. Additionally, it exhibited the highest nucleotide similarity (99.9%) to the GZ2019 strain, which causes death and severe clinical symptoms in Aratinga solstitialis. Furthermore, when compared to other strains of PaBV-4, the GD2207 strain demonstrated the highest amino acid homology with GZ2019. The phylogenetic analysis demonstrated that the GD2207 strain clustered with various strains found in Japanese, American, and German parrots, indicating a close genetic relationship with PaBV-4, but it revealed a distant relationship with PaBV-5 Cockg5 from America. Notably, the GD2207 was closely associated with the GZ2019 strain from Aratinga solstitialis in China. CONCLUSION: This study presents the preliminary identification of PaBV-4 in Amazona aestiva parrots, emphasizing its importance as the predominant viral genotype linked to parrot infections resulting from trade into China. Through genetic evolution analysis, it was determined that the GD2207 strain of PaBV-4 exhibits the closest genetic relationship with GZ 2019 (Aratinga solstitialis, China), M14 (Ara macao, USA), AG5 (Psittacus erithacus, USA) and 6758 (Ara ararauna, Germany) suggesting a shared ancestry.


Assuntos
Doenças das Aves , Bornaviridae , Infecções por Mononegavirales , Papagaios , Animais , Bornaviridae/genética , Filogenia , Comércio , Infecções por Mononegavirales/veterinária , Internacionalidade , Animais Selvagens
4.
J Virol ; 97(8): e0050923, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37578232

RESUMO

Viruses can utilize host splicing machinery to enable the expression of multiple genes from a limited-sized genome. Orthobornaviruses use alternative splicing to regulate the expression level of viral proteins and achieve efficient viral replication in the nucleus. Although more than 20 orthobornaviruses have been identified belonging to eight different viral species, virus-specific splicing has not been demonstrated. Here, we demonstrate that the glycoprotein (G) transcript of parrot bornavirus 4 (PaBV-4; species Orthobornavirus alphapsittaciforme), a highly virulent virus in psittacines, undergoes mRNA splicing and expresses a soluble isoform termed sGP. Interestingly, the splicing donor for sGP is not conserved in other orthobornaviruses, including those belonging to the same orthobornavirus species, suggesting that this splicing has evolved as a PaBV-4-specific event. We have also shown that exogenous expression of sGP does not affect PaBV-4 replication or de novo virion infectivity. In this study, to investigate the role of sGP in viral replication, we established a reverse genetics system for PaBV-4 by using avian cell lines and generated a recombinant virus lacking the spliced mRNA for sGP. Using the recombinant viruses, we show that the replication of the sGP-deficient virus is significantly slower than that of the wild-type virus and that the exogenous expression of sGP cannot restore its propagation efficiency. These results suggest that autologous or controlled expression of sGP by splicing may be important for PaBV-4 propagation. The reverse genetics system for avian bornaviruses developed here will be a powerful tool for understanding the replication strategies and pathogenesis of avian orthobornaviruses. IMPORTANCE Parrot bornavirus 4 (PaBV-4) is the dominant cause of proventricular dilatation disease, a severe gastrointestinal and central nervous system disease among avian bornaviruses. In this study, we discovered that PaBV-4 expresses a soluble isoform of glycoprotein (G), called sGP, through alternative splicing of the G mRNA, which is unique to this virus. To understand the role of sGP in viral replication, we generated recombinant PaBV-4 lacking the newly identified splicing donor site for sGP using a reverse genetics system and found that its propagation was significantly slower than that of the wild-type virus, suggesting that sGP plays an essential role in PaBV-4 infection. Our results provide important insights not only into the replication strategy but also into the pathogenesis of PaBV-4, which is the most prevalent bornavirus in captive psittacines worldwide.


Assuntos
Doenças das Aves , Bornaviridae , Infecções por Mononegavirales , Papagaios , Animais , Bornaviridae/genética , Glicoproteínas/genética , Infecções por Mononegavirales/patologia , Infecções por Mononegavirales/virologia , Papagaios/genética , Isoformas de Proteínas/genética , Genética Reversa , RNA Mensageiro
5.
Viruses ; 14(12)2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36560725

RESUMO

The transmission of parrot bornavirus is still not fully understood. Although horizontal transmission through wounds can be one route, vertical transmission is still discussed. PaBV RNA and PaBV antigen were detected in psittacine embryos, but isolation of the virus failed, raising doubts about this route. In this study, cockatiels were infected either as adults (adult group) or during the first 6 days after hatching (juvenile group) and raised until sexual maturity to breed and lay eggs. A total of 92 eggs (adult group: 49, juvenile group: 43) were laid and incubated until day 17. The embryos and yolk samples were examined by RT-PCR for PaBV RNA and by infectivity assay for infectious virus. In the adult group, 14/31 embryos (45.2%) and 20/39 (51%) of the yolk samples demonstrated PaBV RNA in the PCR. Isolation of PaBV was not possible in any embryo of this group, but it was achieved in six yolk samples from one female. Anti-PaBV antibodies were detected in the yolk samples after seroconversion of all female parents. In the juvenile group, 22/29 embryos (74.9%) were positive for PaBV RNA. In 9/21 embryos (42.9%), PaBV isolation was possible. PaBV RNA was detected in 100% and infectious virus in 41% of the yolk samples. Anti-PaBV antibodies were detected in all yolk samples. For the first time, successful vertical transmission of PaBV was proven, but it seems to depend on the age when the parent birds are infected. Therefore, the age of the bird at time of infection may be an important factor in the occurrence of vertical transmission.


Assuntos
Doenças das Aves , Bornaviridae , Cacatuas , Infecções por Mononegavirales , Papagaios , Animais , Feminino , Cacatuas/genética , RNA Viral/genética , Infecções por Mononegavirales/veterinária
6.
Viruses ; 14(10)2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36298736

RESUMO

Proventricular dilatation disease (PDD) caused by parrot bornavirus (PaBV) infection is an often-fatal disease known to infect Psittaciformes. The impact of age at the time of PaBV infection on organ lesions and tissue distribution of virus antigen and RNA remains largely unclear. For this purpose, tissue sections of 11 cockatiels intravenously infected with PaBV-4 as adults or juveniles, respectively, were examined via histology, immunohistochemistry applying a phosphoprotein (P) antibody directed against the bornaviral phosphoprotein and in situ hybridisation to detect viral RNA in tissues. In both groups of adult- and juvenile-infected cockatiels, widespread tissue distribution of bornaviral antigen and RNA as well as histologic inflammatory lesions were demonstrated. The latter appeared more severe in the central nervous system in adults and in the proventriculus of juveniles, respectively. During the study, central nervous symptoms and signs of gastrointestinal affection were only demonstrated in adult birds. Our findings indicate a great role of the age at the time of infection in the development of histopathological lesions and clinical signs, and thus provide a better understanding of the pathogenesis, possible virus transmission routes, and the development of carrier birds posing a risk to psittacine collections.


Assuntos
Doenças das Aves , Bornaviridae , Cacatuas , Infecções por Mononegavirales , Papagaios , Animais , Cacatuas/genética , Papagaios/genética , Infecções por Mononegavirales/veterinária , RNA Viral/genética , Distribuição Tecidual , Fosfoproteínas
7.
Viruses ; 14(10)2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36298742

RESUMO

While parrot bornaviruses are accepted as the cause of proventricular dilatation disease (PDD) in psittacine birds, the pathogenic role of bornaviruses in common canaries is still unclear. To answer the question of whether canary bornaviruses (species Orthobornavirus serini) are associated with a PDD-like disease in common canaries (Serinus canaria f. dom.), the clinical data of 201 canary bird patients tested for bornaviruses using RT-PCR assays, were analyzed for the presence of PDD-like gastrointestinal or central nervous system signs and for other viruses (mainly circovirus and polyomavirus), yeasts and trichomonads. Canary bornavirus RNA was detected in the clinical samples of 40 out of 201 canaries (19.9%) coming from 28 of 140 flocks (20%). All nucleotide sequences obtained could unequivocally be determined as canary bornavirus 1, 2, or 3 supporting the current taxonomy of the species Orthobornavirus serini. PDD-like signs were found associated with canary bornavirus detection, and to a lesser extent, with circoviruses detection, but not with the detection of polyomaviruses, yeasts or trichomonads. The data indicate that canary bornaviruses contribute to a PDD-like disease in naturally infected canaries, and suggest a promoting effect of circoviruses for the development of PDD-like signs.


Assuntos
Doenças das Aves , Bornaviridae , Circovirus , Infecções por Mononegavirales , Papagaios , Polyomavirus , Animais , Humanos , Bornaviridae/genética , Canários , Infecções por Mononegavirales/veterinária , Papagaios/genética , Circovirus/genética , Polyomavirus/genética , RNA
8.
Viruses ; 14(9)2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36146790

RESUMO

Parrot bornavirus (PaBV) might be transmitted vertically. Cockatiel embryonic brain cells and embryonated eggs of cockatiels (ECE) were infected with PaBV-2 and PaBV-4. In embryonic brain cells, PaBV-2 and PaBV-4 showed no differences in viral spread despite the slower growth of PaBV-2 compared with PaBV-4 in CEC-32 cells. ECE were inoculated with PaBV-4 and 13-14 dpi, organs were sampled for RT-PCR, immunohistochemistry/histology, and virus isolation. In 28.1% of the embryos PaBV-4-RNA and in 81.3% PaBV-4-antigen was detected in the brain. Virus isolation failed. Division of organ samples and uneven tissue distribution of the virus limited the results. Therefore, 25 ECE were inoculated with PaBV-4 (group 1) and 15 ECE with PaBV-2 (group 3) in the yolk sac, and 25 ECE were inoculated with PaBV-4 (group 2) and 15 eggs with PaBV-2 (group 4) in the chorioallantoic membrane to use the complete organs from each embryo for each examination method. PaBV-RNA was detected in the brain of 80% of the embryos in groups 1, 2, 3 and in 100% of the embryos in group 4. In 90% of the infected embryos of group 1, and 100% of group 2, 3 and 4, PaBV antigen was detected in the brain. PaBV antigen-positive brain cells were negative for anti-neuronal nuclear protein, anti-glial fibrillary acidic protein, and anti S-100 staining. Virus was not re-isolated. These results demonstrated a specific distribution pattern and spread of PaBV-4 and PaBV-2 in the brain when inoculated in ECE. These findings support a potential for vertical transmission.


Assuntos
Doenças das Aves , Bornaviridae , Cacatuas , Infecções por Mononegavirales , Papagaios , Animais , Cacatuas/genética , Infecções por Mononegavirales/veterinária , Proteínas Nucleares , Papagaios/genética , RNA
9.
J Comp Pathol ; 196: 6-10, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36008044

RESUMO

A 3-month-old, female rose-crowned parakeet (Pyrrhura rhodocephala) was found dead after a 24-h course of lethargy and passing blood-tinged faeces. Fine white streaks were seen in the pectoral muscles on necropsy. Microscopic examination revealed typical lesions of avian ganglioneuritis and vascular necrosis in the pectoral muscles, myocardium, kidneys, air sacs, adrenal glands, pancreas and thyroid gland. These lesions were characterized by mural fibrinoid necrosis of small and medium-calibre arteries and arterioles, associated with lymphoplasmacytic inflammation, necrosis, atrophy and fibrosis of the surrounding tissues. Parrot bornavirus (PaBV) nucleoprotein was demonstrated by immunohistochemistry in smooth muscle and endothelial cells of many vessels. An avian bornavirus was isolated from kidney tissue and its identity confirmed as PaBV-4 by sequencing and phylogenetic analysis. We postulate that the vascular lesions could have been immune-mediated and that PaBV-4 may have played a role in its pathogenesis.


Assuntos
Doenças das Aves , Bornaviridae , Infecções por Mononegavirales , Papagaios , Rosa , Vasculite , Animais , Doenças das Aves/patologia , Bornaviridae/fisiologia , Células Endoteliais/patologia , Feminino , Infecções por Mononegavirales/patologia , Infecções por Mononegavirales/veterinária , Necrose/veterinária , Periquitos , Filogenia , Vasculite/veterinária
10.
Viruses ; 14(7)2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35891493

RESUMO

Avian bornaviruses constitute a genetically diverse group of at least 15 viruses belonging to the genus Orthobornavirus within the family Bornaviridae. After the discovery of the first avian bornaviruses in diseased psittacines in 2008, further viruses have been detected in passerines and aquatic birds. Parrot bornaviruses (PaBVs) possess the highest veterinary relevance amongst the avian bornaviruses as the causative agents of proventricular dilatation disease (PDD). PDD is a chronic and often fatal disease that may engulf a broad range of clinical presentations, typically including neurologic signs as well as impaired gastrointestinal motility, leading to proventricular dilatation. It occurs worldwide in captive psittacine populations and threatens private bird collections, zoological gardens and rehabilitation projects of endangered species. In contrast, only little is known about the pathogenic roles of passerine and waterbird bornaviruses. This comprehensive review summarizes the current knowledge on avian bornavirus infections, including their taxonomy, pathogenesis of associated diseases, epidemiology, diagnostic strategies and recent developments on prophylactic and therapeutic countermeasures.


Assuntos
Doenças das Aves , Bornaviridae , Infecções por Mononegavirales , Papagaios , Animais , Bornaviridae/genética , Infecções por Mononegavirales/epidemiologia , Infecções por Mononegavirales/veterinária
12.
Vet Pathol ; 59(3): 493-497, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35001760

RESUMO

Proventricular dilatation disease is a lethal disease of psittacine birds. In this study, we characterized the local cellular immune response in the brain, proventriculus, and small intestine of 27 cockatiels (Nymphicus hollandicus) experimentally infected with parrot bornavirus 2 (PaBV-2). Perivascular cuffs in the brain were composed of CD3+ T-lymphocytes and Iba1+ macrophages/microglia in most cockatiels (n = 26). In the ganglia of the proventriculus, CD3+ T-lymphocytes (n = 17) and Iba1+ macrophages (n = 13) prevailed. The ganglia of the small intestine had a more homogeneous distribution of these leukocytes, including PAX5+ B-lymphocytes (n = 9), CD3+ T-lymphocytes (n = 8), and Iba1+ macrophages (n = 8). Our results indicate that perivascular cuffs in the brain and the inflammatory infiltrate in the proventriculus of PaBV-2-infected cockatiels is predominately composed of T-lymphocytes, while the inflammatory infiltrates in the ganglia of the small intestine are characterized by a mixed infiltrate composed of T-lymphocytes, B-lymphocytes, and macrophages.


Assuntos
Doenças das Aves , Bornaviridae , Cacatuas , Sistema Nervoso Entérico , Infecções por Mononegavirales , Papagaios , Animais , Infecções por Mononegavirales/veterinária
13.
Viruses ; 13(12)2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34960735

RESUMO

Vesicular stomatitis virus (VSV), the founding member of the mononegavirus order (Mononegavirales), was found to be a negative strand RNA virus in the 1960s, and since then the number of such viruses has continually increased with no end in sight. Sendai virus (SeV) was noted soon afterwards due to an outbreak of newborn pneumonitis in Japan whose putative agent was passed in mice, and nowadays this mouse virus is mainly the bane of animal houses and immunologists. However, SeV was important in the study of this class of viruses because, like flu, it grows to high titers in embryonated chicken eggs, facilitating the biochemical characterization of its infection and that of its nucleocapsid, which is very close to that of measles virus (MeV). This review and opinion piece follow SeV as more is known about how various mononegaviruses express their genetic information and carry out their RNA synthesis, and proposes a unified model based on what all MNV have in common.


Assuntos
Infecções por Mononegavirales/virologia , Mononegavirais/genética , RNA Viral/genética , Vírus Sendai/genética , Animais , Genoma Viral , Humanos , Mononegavirais/metabolismo , RNA Viral/metabolismo , Infecções por Respirovirus/virologia , Vírus Sendai/metabolismo
14.
Viruses ; 13(7)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34372564

RESUMO

Avian bornaviruses were first described in 2008 as the causative agents of proventricular dilatation disease (PDD) in parrots and their relatives (Psittaciformes). To date, 15 genetically highly diverse avian bornaviruses covering at least five viral species have been discovered in different bird orders. Currently, the primary diagnostic tool is the detection of viral RNA by conventional or real-time RT-PCR (rRT-PCR). One of the drawbacks of this is the usage of either specific assays, allowing the detection of one particular virus, or of assays with a broad detection spectrum, which, however, do not allow for the simultaneous specification of the detected virus. To facilitate the simultaneous detection and specification of avian bornaviruses, a multiplex real-time RT-PCR assay was developed. Whole-genome sequences of various bornaviruses were aligned. Primers were designed to recognize conserved regions within the overlapping X/P gene and probes were selected to detect virus species-specific regions within the target region. The optimization of the assay resulted in the sensitive and specific detection of bornaviruses of Psittaciformes, Passeriformes, and aquatic birds. Finally, the new rRT-PCR was successfully employed to detect avian bornaviruses in field samples from various avian species. This assay will serve as powerful tool in epidemiological studies and will improve avian bornavirus detection.


Assuntos
Bornaviridae/genética , Bornaviridae/isolamento & purificação , Reação em Cadeia da Polimerase Multiplex/métodos , Animais , Doenças das Aves/virologia , Aves/genética , Aves/virologia , Primers do DNA/genética , Genoma Viral , Infecções por Mononegavirales/veterinária , Papagaios/genética , Papagaios/virologia , Passeriformes/genética , Passeriformes/virologia , Filogenia , RNA Viral/genética , Sequenciamento Completo do Genoma/métodos
15.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33990470

RESUMO

Although viruses have threatened our ancestors for millions of years, prehistoric epidemics of viruses are largely unknown. Endogenous bornavirus-like elements (EBLs) are ancient bornavirus sequences derived from the viral messenger RNAs that were reverse transcribed and inserted into animal genomes, most likely by retrotransposons. These elements can be used as molecular fossil records to trace past bornaviral infections. In this study, we systematically identified EBLs in vertebrate genomes and revealed the history of bornavirus infections over nearly 100 My. We confirmed that ancient bornaviral infections have occurred in diverse vertebrate lineages, especially in primate ancestors. Phylogenetic analyses indicated that primate ancestors were infected with various bornaviral lineages during evolution. EBLs in primate genomes formed clades according to their integration ages, suggesting that bornavirus lineages infected with primate ancestors had changed chronologically. However, some bornaviral lineages may have coexisted with primate ancestors and underwent repeated endogenizations for tens of millions of years. Moreover, a bornaviral lineage that coexisted with primate ancestors also endogenized in the genomes of some ancestral bats. The habitats of these bat ancestors have been reported to overlap with the migration route of primate ancestors. These results suggest that long-term virus-host coexistence expanded the geographic distributions of the bornaviral lineage along with primate migration and may have spread their infections to these bat ancestors. Our findings provide insight into the history of bornavirus infections over geological timescales that cannot be deduced from research using extant viruses alone, thus broadening our perspective on virus-host coevolution.


Assuntos
Evolução Biológica , Bornaviridae/genética , Interações entre Hospedeiro e Microrganismos , Infecções por Mononegavirales/história , Vertebrados/genética , Animais , Bornaviridae/classificação , Linhagem da Célula , Genoma , História Antiga , Filogenia , Primatas/genética , Integração Viral
16.
J Wildl Dis ; 57(2): 471-473, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33822170

RESUMO

An indirect immunofluorescence serologic assay, PCR assay, and histopathology were used to screen for psittaciform orthobornaviruses (PaBV) in wild Cacatuidae in Victoria, Australia. Anti-PaBV antibodies were detected, but PCR and histopathology did not detect PaBV. This study presents the first evidence of PaBV in wild birds in Australia.


Assuntos
Bornaviridae , Cacatuas/virologia , Infecções por Mononegavirales/veterinária , Animais , Animais Selvagens , Anticorpos Antivirais/sangue , Cloaca/virologia , Infecções por Mononegavirales/sangue , Infecções por Mononegavirales/epidemiologia , Infecções por Mononegavirales/virologia , Estudos Soroepidemiológicos , Vitória/epidemiologia
17.
Emerg Microbes Infect ; 10(1): 602-611, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33706665

RESUMO

The variegated squirrel bornavirus 1 (VSBV-1) is a recently discovered emerging viral pathogen which causes severe and eventually fatal encephalitis in humans after contact to exotic squirrels in private holdings and zoological gardens. Understanding the VSBV-1 epidemiology is crucial to develop, implement, and maintain surveillance strategies for the detection and control of animal and human infections. Based on a newly detected human encephalitis case in a zoological garden, epidemiological squirrel trade investigations and molecular phylogeny analyses of VSBV-1 with temporal and spatial resolution were conducted. Phylogenetic analyses indicated a recent emergence of VSBV-1 in European squirrel holdings and several animal-animal and animal-human spill-over infections. Virus phylogeny linked to squirrel trade analysis showed the introduction of a common ancestor of the known current VSBV-1 isolates into captive exotic squirrels in Germany, most likely by Prevost's squirrels (Callosciurus prevostii). The links of the animal trade between private breeders and zoos, the likely introduction pathway of VSBV-1 into Germany, and the role of a primary animal distributor were elucidated. In addition, a seroprevalence study was performed among zoo animal caretakers from VSBV-1 affected zoos. No seropositive healthy zoo animal caretakers were found, underlining a probable high-case fatality rate of human VSBV-1 infections. This study illustrates the network and health consequences of uncontrolled wild pet trading as well as the benefits of molecular epidemiology for elucidation and future prevention of infection chains by zoonotic viruses. To respond to emerging zoonotic diseases rapidly, improved regulation and control strategies are urgently needed.


Assuntos
Bornaviridae/isolamento & purificação , Infecções por Mononegavirales/epidemiologia , Infecções por Mononegavirales/virologia , Sciuridae/virologia , Zoonoses/epidemiologia , Zoonoses/virologia , Animais , Teorema de Bayes , Bornaviridae/classificação , Bornaviridae/genética , Encefalite/virologia , Feminino , Genoma Viral , Alemanha/epidemiologia , Humanos , Masculino , Infecções por Mononegavirales/transmissão , Filogenia , Reação em Cadeia da Polimerase , RNA Viral , Estudos Soroepidemiológicos , Zoonoses/transmissão
18.
Avian Pathol ; 50(2): 138-150, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33215512

RESUMO

Parrot bornavirus (PaBV) is a pathogen often found in psittacine populations. Infected, clinically healthy carrier birds are of major importance for epidemiology, but the underlying pathomechanism of this carrier status is poorly understood. The age, implying the maturation status of the immune system, at the time of infection might be significant for the clinical outcome. Therefore, two groups of 11 cockatiels of different ages (adult and newly hatched) were inoculated with a PaBV-4 isolate intravenously. The trial lasted for 233 days and all birds were observed for clinical signs, PaBV-RNA shedding and anti-PaBV antibody production. At the end of the trial, histopathology, immunohistochemistry, PCR and virus re-isolation were performed. All 22 birds seroconverted and shed PaBV-RNA during the investigation period; the juvenile group earlier and more homogeneously. Nine of 11 birds of the adult group developed clinical signs; five birds died or had to be euthanized before the end of the study. In the juvenile group none of the birds developed clinical signs and only one bird died due to bacterial septicaemia. Eight birds of the adult group, but none of the juvenile group, showed a dilatation of the proventriculus. PaBV-RNA detection and virus re-isolation were successful in all birds. Immunohistochemically, PaBV antigen was found in all birds. Histopathology revealed mononuclear infiltrations in organs in birds of both groups, but the juveniles were less severely affected in the brain.Thus, PaBV infection at an age with a more naïve immune system makes the production of carrier birds more likely.RESEARCH HIGHLIGHTS PaBV infection at a young age might favour the development of carrier birds.Cockatiels infected at a very young age showed inflammation but no clinical signs.The juvenile group started seroconversion and PaBV-RNA shedding earlier.Seroconversion and PaBV-RNA shedding occurred more homogeneously in the juveniles.


Assuntos
Doenças das Aves/virologia , Bornaviridae/imunologia , Cacatuas/virologia , Infecções por Mononegavirales/veterinária , Doenças do Sistema Nervoso/veterinária , Papagaios/virologia , Fatores Etários , Animais , Bornaviridae/genética , Encéfalo/virologia , Feminino , Masculino , Infecções por Mononegavirales/virologia , Doenças do Sistema Nervoso/virologia , RNA Viral/genética , Soroconversão , Eliminação de Partículas Virais
19.
Emerg Microbes Infect ; 9(1): 2474-2484, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33151793

RESUMO

The variegated squirrel bornavirus 1 (VSBV-1), a member of the family Bornaviridae, was discovered in 2015 in a series of lethal human infections. Screening approaches revealed kept exotic squirrels as the putative source of infection. Infectious virus was successfully isolated by co-cultivation of infected primary squirrel cells with permanent cell lines. For in vivo characterization, neonatal and adult Lewis rats were inoculated either intracranially, intranasally or subcutaneously. After 4.5 months, three out of fifteen neonatal intracranially inoculated rats were VSBV-1 genome positive in the central nervous system without showing clinical signs. Pathohistological examination revealed a non-purulent encephalitis. While infection of immune incompetent rats (neonatal) using the type species of mammalian bornaviruses, the Borna disease virus 1, proceed to an immune tolerant status, VSBV-1 infection could result in inflammation of neuronal tissue. Sequencing showed minor adaptations within the VSBV-1 genome comparing to the viral genomes from infected squirrels, cell cultures or rat tissues. In conclusion, we were able to generate the first VSBV-1 isolates and provide in vivo animal model data in Lewis rats revealing substantial differences between VSBV-1 and BoDV-1. Furthermore, the presented data are a precondition for insights into the transmission and pathogenesis of this novel zoonotic pathogen.


Assuntos
Bornaviridae/patogenicidade , Encefalite Viral/virologia , Infecções por Mononegavirales/virologia , RNA Viral/genética , Sciuridae/virologia , Análise de Sequência de RNA/métodos , Adaptação Fisiológica , Animais , Bornaviridae/genética , Bornaviridae/isolamento & purificação , Células Cultivadas , Sistema Nervoso Central/virologia , Chlorocebus aethiops , Técnicas de Cocultura , Feminino , Tamanho do Genoma , Genoma Viral , Genótipo , Masculino , Cultura Primária de Células , Ratos , Ratos Endogâmicos Lew , Células Vero
20.
Avian Dis ; 64(3): 247-253, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33205181

RESUMO

In this study, we investigated the natural route of infection of psittacine bornavirus (PaBV), which is the causative agent of proventricular dilatation disease (PDD) in psittacines. We inoculated two infection groups through wounds with a PaBV-4 isolate. In nine cockatiels (Nymphicus hollandicus) we applied a virus suspension with a titer of 103 50% tissue culture infection dose (TCID50) via palatal lesions (Group P, P1-9). In a second group of three cockatiels, we applied a virus suspension with a titer of 104 TCID50 to footpad lesions (Group F, F1-3). In two cockatiels, the control (or "mock") group, we applied a virus-free cell suspension (Group M, M1-2) via palatal lesions. The observation period was 6 mo (Groups P and M) or 7 mo (Group F). We monitored PaBV-4 RNA shedding and seroconversion. At the end of the study, we examined the birds for the presence of inflammatory lesions, PaBV-4 RNA, and antigen in tissues, as well as virus reisolation of brain and crop material. We did not observe any clinical signs typical of PDD during this study. We also did not see seroconversion or PaBV RNA shedding in any bird during the entire investigation period, and virus reisolation was not successful. We only found PaBV-4 RNA in sciatic nerves, footpad tissue, skin, and in one sample from the intestine of Group F. In this group, the histopathology revealed mononuclear infiltrations mainly in skin and footpad tissue; immunohistochemistry showed positive reactions in spinal ganglia and in the spinal cord, and slightly in skin, footpad tissues, and sciatic nerves. In Groups P and M we found no viral antigen or specific inflammations. In summary, only the virus application on the footpad lesion led to detectable PaBV RNA, mononuclear infiltrations, and positive immunohistochemical reactions in tissues of the experimental birds. This could suggest that PaBV spreads via nervous tissue, with skin wounds as the primary entry route.


Assuntos
Transporte Axonal , Doenças das Aves/virologia , Bornaviridae/fisiologia , Cacatuas/lesões , Infecções por Mononegavirales/veterinária , Animais , Cacatuas/fisiologia , Inflamação/virologia , Infecções por Mononegavirales/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...